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Factor analysis has been the traditional method for studying the

dimensionality of test data. This is true for dichotomous data even though

several authors have documented problems with the application of factor

analysis to this type of data (Dingman, 1958; Ferguson, 1941; Gourley, 1951;

Guilford, 1941; 11cDonald and Ahlawat, 1974). The continued use of factor

analysis, especially with tetrachoric correlations, for the analysis of

dichotomous data probably stems from the need to verify the unidimensionality

assumption required for many item response theory (IRT) models. In addition,

Lord and Novick (1968) suggest that the analysis of tetrachoric correlations

may be helpful in supporting the assuMption, even though they exhibit

appropriate caution in their discussion of the topic.

However, under fairly common conditions, the factor analysis of

tetrachoric correlations does not recover the underlying structure of

dichotomous data (Gourley, 1951; Reckase, 1979). This paper presents some
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reasons why this should be the case if it can be assumed that the dichotomous

data can be accurately described by an IRT model. Specifically, this paper

will show that the assumptions of the tetrachoric correlation are not

consistent with a general class of IRT models. The relationship between the

IRT models for two test items and the bivariate distribution of the ability to

respond to two test items will be described first. This relationship will

then be used to discuss the tetrachoric correlations between two items and the

implications these correlations have for factor analyses of dichotomous test

data.

A Model of the Relationship between Scores

on Dichotomous Items and a Hypothetical Latent Trait

In this paper it is assumed that the relationship between the performance

of a person on a test item and the trait measured by the item is so complex

that it can only be described by a probabilistic model. The probabilistic

model is defined by a function that relates the probability of a correct

response to the item to the level of ability of a person on a hypothetical

latent trait. This function may be described either by a mathematical formula

or by a set of ordered pairs of probabilities and corresponding abilities.

For this paper, the probabilistic model will be specified by the set of

ordered pairs because it defines a more general class of IRT models than can

be defined by mathematical formulas.

According to this model, for each value of the latent ability being

measured by an item,* there is a corresponding probability of a correct

response to the item. The fact that a probabilistic model is being used

implies that there is uncertainty about the response of the person to the
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item. At different times and under different conditions, different responses

may be given to the same item by the same person.

One way to explain the probabilistic relationship between latent ability

and the item score is to assume that the ability to respond correctly to an

item is a function of a very large number of variables that describe the

mental state of the person taking the item. Since each state variable

accounts for a very small proportion of the variance of the item score, and

because there are very many variables, the result can only be described by a

distribution of uncertainty for the individual on the item trait. Lord and

Novick (1968) have called this distribution a propensity distribution.

Thurstone (1927) called it a discriminal dispersion. Because the distribution

is based on the effects of the combination of a large number of variables, it

can be assumed to be normal.

The propensity distribution is defined on the scale of the ability that

is required to respond correctly to the item. Whether or not a person obtains

a correct response to the item depends on whether or not their ability is

above or below a critical valut for the item. The critical value is located

at a point that divides the distributiOn into two parts, the upper part

containing a proportion equal to the probability of a correct response and the

lower part corresponding to the probability of an incorrect response.

The mean of the propensity distribution for a person's response to an

item can be determined from the person's ability and the IRT function. Using

the ability and the IRT function, the probability of a correct response can be

determined. The inverse normal distribution function can then be applied to

the probability to obtain the corresponding zscore. If the critical value of

the item is arbitrarily set at zero (this can be done because the origin of

the scale is undetermined), the zscore is equal to the mean of the propensity
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distribution for that person on that item. Since the mean of the propensity

distribution has been defined as the true score by Lord and Novick (1968),

this process also defines the true score for a person on an item. The process

of conversion, from latent trait to true score on the item scale, is

summarized in Figure 1.

5
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By transforming all of the abilities in the latent distribution to means

of propensity distributions, the distribution of true scores on the item trait

can be determined. If this is done for two items simultaneously, the

bivariate distribution of the true scores on the items can be determined.

Item Trait Distributions Implied

by Several ICC Models

In order to determine the characteristics of the distribution of true

scores on the item traits given that the distribution on the latent trait is

standard normal (N (0, 1)), 2,000 cases were generated using the IMSL (1980)

random normal number generator. For each of these values, the probability of

a correct response ta a series of hypothetical items was determined from the

ICC's for the items. The ICC's for the items were specifie4 by ordered pairs

of the probabilities that corresponded to 6-values of -3, -2, -1, 0, 1, 2,

3. The probability of a correct response for the 2,000 cases was determined

by linear interpolation or extrapolation if the values did not correspond to

the seven values used to specify the probabilities. Once the probabilities

were determined, the true scores on the item scales were obtained using the

inverse normal transformation.

The distributions of item traits were obtained for three different ICC

models. The probabilities corresponding to the seven 0-values for the three

items are given in Table 1.

7



-7-

Table 1

Probabilities Defining the
ICC's for Three Items

Item 0-Value
-3 -2 -1 0 1 2 3

2 .10 .05 .20 .55 .70 .80 .90
17 .15 .15 .15 .15 .30 .40 .60
20 .50 .40 .20 .50 .70 .80 .90

Item 2 is a moderately difficult item with a lower asymptote of .10.

This item has a slightly nonmonotonic item characteristic curve (ICC). The

item true score distribution that corresponds to the latent distribution for

this item is given in Figure 2a. As can be seen, this distribution is

negatively skewed with a skewness of -.58. The item true score distribution

that corresponds to the latent trait distribution for Item 17, a very hard

item, is given in Figure 2b. This distribution is highly positively skewed

(skewness = 1.32). Item 20 is a moderately difficult item with a strongly

nonmonotonic item characteristic curve'. The item true score distribution for

this item is shown in Figure 2c. This distribution also deviates

substantially from a normal distribution. However, in this case the deviation

is in the form of being platykurtic (kurtosis = -.865).
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The bivariate true score distributions for each of the pairs of items are

given in Figures 3a, 3b, and 3c. For all of the cases shown here, the

bivariate distribution of the item traits is a tight curve. Clearly the

assumption of linearity is not supported. However, the strength of the

relationship clearly demonstrates the unidimensional nature of these data.
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Bivariste Distribution for Item True Scores
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However, true scores are never observed. To obtain the continuous score

equivalent of the observed item scores, scores were randomly sampled from the

propensity distributions for each personitem combination. The bivariate

observed score distributions for the three items given in Table 1 are

presented in Figures 4a, 4b and 4c. These are the distributions whose p

parameter is estimated by the tetrachoric correlation coefficient. Note that

these distributions are not bivariate normal.
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Propensity Distributiun

Figure 4a

Bivariate Item Score Distribution
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Propensity Distribution

Figure 4b

Bivariate Item Score Distribution

18



Propensity Distribution

Figure 4c

Bivariate Item Score Distribution
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Factor Analysis Results

In order to demonstrate the effects of violating the assumptions of the

tetrachoric correlations on factor analyses, dichotomous data were generated

using many different types of ICC's. The probabilities used to describe these

ICC's are given in Table 2. The factor loading matrix and eigenvalues from

the principal component analysis of the tetrachoric correlations for these

data are given in Table 3.

Table 2

Probabilities Corresponding to Seven Ability Levels
for Twenty Hypothetical Items

Item Ability Level
3 2 1 0 1 2 3

1 00 80 85 90 92 95 98
2 10 05 20 55 70 80 90
3 10 30 70 80 90 95 99
4 10 10 40 70 80 90 95
5 10 10 15 50 70 80 90
6 50 70 90 91 92 93 97
7 40 60 80 90 95 97 99

8 35 50 70 90 95 97 99
9 20 40 60 80 90 95 99
10 15 20 50 70 90 95 99
11 15 15 40 60 80 90 95
12 20 15 30 50 70 90 95

13 15 15 20 40 60 80 90
14 20 15 15 30 50 70 90
15 15 15 15 15 40 60 90
16 20 15 15 15 40 50 80
17 15 15 15 15 30 40 60
18 25 20 15 15 15 30 50
19 00 00 40 40 60 60 90
20 50 40 20 50 70 80 90

Note: Decimal points have not been included. All values are to two decimal
places.

20



Table 3

Unrotated 13Ancipal Components of the Tetrachoric Correlations

Item
Component Loadings*

1 2 3 4 5

1 .20 .28 .36 .59

2 .28 .52 .25 -.41
3 .51 -.59
4 .49 .56 -.24
5 .58 .48

6 .67 -.22
7 .38 .66

8 .27 .76 -.24
9 .49 .52 -.22

10 .56

11 .58 .31

12 .63

13 .61

14 .59

15 .56

16 .52 -.22 -.25
17 .49 -.30 .39

18 .41 -.41 -.28
19 .34 -.36 -.29
20 .24 .44 .37 -.27 .31

Eigen value 4.76 1.71 1.47 1.18 1.02

Note: *Loadings less than .2 in absolute value have been deleted.

As can be seen from this analysis, the unidimensional nature of the

ability dimension was not supported. Five factors are present with

eigenvalues greater than 1.0 and none of the factors are readily related to

item characteristics.

Discussion and Conclusions

The purpose of this paper was to demonstrate that the factor analysis of

tetrachoric correlations is unlikely to yield clear support for
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unidimensionality even when the data are generated to be unidimensional. This

result is caused by a failure of item data to meet the assumptions of the

tetrachoric correlation.

In this study, item true score distributions were generated assuming a

normal latent trait and a variety of forms for the ICC's for the items. In

every case, these distributions were shown to be nonnormal, and the bivariate

distributions were shown not to match the bivariate normal. The principal

component analysis of data generated according to these ICC's yielded a highly

complex solution, most likely a result of the violation of the assumptions of

the tetrachoric correlations that form the basis of the analysis.

New methods for factor analysis have recently been developed specifically

for dichotomous data (Bock and Aitken, 1981; McDonald, 1967; Muthen, 1983;

Christoffersson, 1981). These methods may be better able to meet the

requirements of data of this type. However, these methods assume a particular

form for an ICC and they may not be able to accurately describe data that are

generated using a different form for an ICC. This is clearly an area for

future research.
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